

Detailed Description

Standard Cation Resin Filter Cartridge

For water hardness reduction, our Cation Resin Filter Softens your water by releasing Hydrogen (H⁺) ions or other positively charged ions in exchange for impurities present in the water.

The process involves passing water containing hardness mineral ions, namely calcium (Ca²⁺) and magnesium (Mg²⁺) through a column containing a strongly acidic cation exchange resin in the sodium (Na⁺) form (i.e. the exchangeable cations are sodium). The calcium and magnesium ions are exchanged for an equivalent number of sodium ions. The resin, once exhausted, (i.e. all the available sodium ions have been exchanged) must be recharged. This entails passing a solution containing a high concentration of sodium salts, such as brine (sodium chloride), through the ion exchange resin in a process known as regeneration.

Specifications

- Cation Resin filter Cartridge - Size 2.5" x 10" and Size 2.5" x 20"
- Fits most standard 10" size housings and most reverse osmosis systems.
- Fits most standard 20" size housings and most reverse osmosis systems.
- Filter Media: Cation Resin
- Maximum Recommended Flow Rate: 2.5 to 5 GPM (depends on incoming water pressure).
- Operational Temperature Range: 40°F to 100°F
- Maximum pressure: 125 PSI (8.6 bar)
- Minimum pressure: 20 PSI (1.4 bar)
- Cartridge capacity dimensions - ID: 30mm OD: 70 mm
- Reduces total Dissolved Solids (TDS) and hardness, can also be used as a pre-filter to prevent build up of scale on sensitive equipment.
- End Caps: Polypropylene
- All filters are individually wrapped.

For Hardness Reduction, Softening your water by releasing Hydrogen (H⁺) ions or other positively charged ions in exchange for impurity cations present in the water. The process involves passing water containing hardness ions, namely calcium (Ca²⁺) and magnesium (Mg²⁺) through a column containing a strongly acidic cation exchange resin in the sodium (Na⁺) form (i.e. exchangeable cations are sodium). The calcium and magnesium ions are exchanged for an equivalent number of sodium ions. The resin, once exhausted, (i.e. all the available sodium ions have been exchanged) must be recharged. This entails passing a solution containing a high concentration of sodium salts such as brine (sodium chloride) through the ion exchange resin - a process known as regeneration.