

Maxsoft, MZ120NA is a sodium form 8% crosslinked gel strong acid cation resin. MZ120NA is a coarse mesh resin with low surface area and high void volume. Maxsoft, MZ120NA is intended for use in high flowrate applications where the lowest possible pressure loss and highest possible flow rate is needed. MZ120NA is supplied in the sodium form.

FEATURES & BENEFITS

- **HIGHLY UNIFORM COARSE PARTICLE SIZE**
16 to 30 mesh size provides low pressure drop in high flowrate applications and helps prevent suspended solids from restricting flow
- **LOW CLOR THROW**
- **SUPERIOR PHYSICAL STABILITY**
93% plus sphericity and high crush strengths together with carefully controlled particle distribution provides long life and low pressure drop

1) Indexes of Physical and Chemical Properties:

Designation

Volum Exchange Capacity (meq/ml)	2.0 Min
Water Retention (%)	43-48
Bulk Density (g/ml)	0.78-0.88
Specific Density (g/ml)	1.26-1.30
Particle Size (0.4-1.25 mm)	95% Min
Effective Size (mm)	0.5-0.7 mm
Homogeneous Coefficient	1.70 Max
Roundness after Attrition (%)	90 Min
Appearance	Amber
Ionic Form Supplied	Sodium (Na)

2) Reference Indexes for Operation

PH Range	0-14;
Maximum Operation Temp (°C)	H ⁺ : 100°C Max; Na ⁺ : 120°C Max;
Total Reversible Swelling (Na ⁺ → H ⁺ , %)	5-8
Working Exchange Capacity (25)	1000 meq/l (wet) Min;
Concentration of Regenerate Solution	NaCl: 8-10%; HCl: 4-5%;
Consumption of Regenerate	NaCl: (8-10%) Vol.: Resin Vol. = 1.5-2:1; HCl (4-5%) Vol.: Resin Vol. = 2-3:1;
Flow Rate of Regenerate Solution (m/hr)	4-6
Regenerate Contact time (minute)	30-60
Rinse Flow Rate (m/hr)	10-20
Rinse Time (minute)	30 (approx.)
Operating Flow Rate (m/hr)	10-45

3) Packing:

Each PE bag, net weigh: 25L or 1000L;

4) Application

International gel type standard. Suitable for softening and demineralization.
Used also in amion acids antibiotics.

HYDRAULIC PROPERTIES

PRESSURE LOSS

The graph above shows the expected pressure loss of Maxzoft MZ120NA per foot of bed depth as a function of flow rate at various temperatures.

BACKWASH

The graph above shows the expansion characteristics of Maxzoft MZ120NA as a function of flow rate at various temperatures.

